Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root

J. Vander Auwera a,⁎, O. Bolle a, B. Bingen b, J.-P. Liégeois c, M. Bogaerts a, J.C. Duchesne a, B. De Waele d, J. Longhi e

a UR Pétrologie, Géochimie endogènes et Pétrophysique (B20), Université de Liège, B-4000 Sart Tilman, Belgium
b Geological Survey of Norway, 7491 Trondheim, Norway
c Royal Museum of Central Africa, B-3080 Tervuren, Belgium
d SRK Consulting, 10 Richardson Street, West Perth, WA 6005, Western Australia
e Lamont-Doherty Earth Observatory, Palisades, NY, USA

Abstract

Two magmatic suites were emplaced during the post-collisional evolution of the Sveconorwegian orogeny: an Anorthosite–Mangerite–Charnockite suite (AMC suite), and an hornblende- and biotite-bearing granitoids suite (HBG suite). The AMC suite is exclusively located in the westernmost and warmest part of the orogen, in granulite facies gneisses, whereas the HBG suite intruded in the rest of the orogen, but not in the granulite domain. New U–Pb zircon geochronological data confirm previous age determinations: 970–932 Ma (HBG suite) and 933–916 Ma (AMC suite).

The mafic facies of the two post-collisional magmatic suites have similar geochemical compositions but the HBG differentiation trend displays higher CaO, Sr, U and Th as well as lower K2O and FeOt/MgO than the AMC differentiation trend. The HBG suite is hydrous and has a broadly higher fO2 whereas the AMC suite is anhydrous.

The inferred parent magmas of both suites have overlapping initial Sr, Nd and Pb isotopic compositions. With increasing differentiation, the two trends point towards two different crustal contaminants. Together with the recent recognition of a major crustal shear zone located just east of the AMC suite, this difference suggests that the suites were emplaced in two different lithotectonic units.

Using published experimental constraints and geochemical modeling, we suggest that the mafic facies of both suites were produced by partial melting of lower crustal sources which were previously underplated, probably during the evolution of a long-lasting convergent margin. Later, these lower crustal sources were modified by the regional granulite facies metamorphism (1.035 to 0.97 Ga) prevailing in the westernmost part of the orogen, thus producing an anhydrous lower crustal source for the AMC suite.

Accordingly, we conclude that the Sveconorwegian massif-type anorthosites result from partial melting of the continental arc root. This process, if accepted for other AMCG (Anorthosite–Mangerite–Charnockite–Granite) complexes, was possible in the Proterozoic because of a sufficiently high temperature, but not in the Archean because in subduction zones the main transfer to the crust was then felsic (tonalites, granodiorites) and not basaltic. We thus further suggest that the onset of massif-type anorthosites at the beginning of the Proterozoic may mark the time when plate tectonics began to operate in a similar way as today.

© 2011 Elsevier B.V. All rights reserved.
Massif-type anorthosites have long been recognized as magmatic rocks typical of the Proterozoic (e.g. Ashwal, 1993; Vigneresse, 2005). U-Pb zircon and baddeleyite ages indicate that this magmatism was produced from 2.12 Ga (Arnanunat Plutonic Suite: Hamilton et al., 1998; Ryan et al., 1999) to 0.93 Ga (Rogaland Anorthositic Suite: Hamilton et al., 2010), jotunites (Duchesne et al., 1974; Demaiffe et al., 1986; Duchesne, 1990; Vander Auwera et al., 1998; Longhi et al., 1999), are now supporting a lower crustal source in agreement with earlier work (Simmons and Hanson, 1978; Bingen et al., 2008). It is made up of one parautochthonous segment, the Eastern Segment, and two main allochthonous terranes, the Iddefjorden and Telemarkia terranes (Fig. 1). The Eastern Segment mainly consists of reworked granitoids of the 1.85–1.65 Ga Transscandinavian Igneous Belt, while the Iddefjorden and Telemarkia terranes are mainly made up of Mesoproterozoic metasedimentary, metavolcanic and metaplutonic rocks. Several sectors have been recognized in the Telemarkia terrane: Rogaland–Vest Agder, Suldal, Hardangervidda and Telemark. The Bamble–Kongsberg terrane is interpreted by Bingen et al. (2005) and Bingen et al. (2008) as a minor collision zone between the Iddefjorden and Telemarkia terranes.
In Rogaland–Vest Agder, petrological and geochronological data (Maijer, 1987; Bingen and van Breemen, 1998b; Möller et al., 2002; Tomkins et al., 2005) indicate a sequence of three metamorphic phases. The M1 phase corresponds to the Sveconorwegian regional metamorphism dated at 1.035 to 0.97 Ga (Bingen and van Breemen, 1998b). The M2 phase is a high- to ultra high-T thermal event associated with intrusion of the AMC suite of Rogaland at 0.93 Ga (Schärer et al., 1996). Finally, M3 is post-M2 cooling that led to progressive reequilibration of parageneses (Rietmeijer, 1984; Maijer, 1987). Thus, high grade conditions persisted for more than 100 Ma (1.035–0.90 Ga) in Rogaland–Vest Agder through two successive granulite-facies events (M1 at 1.035–0.97 Ga and M2 at 0.93–0.92 Ga) (see Bingen et al., 2008). Four main isograds have been recognized. With increasing grade of metamorphism from NE to SW, these isograds are: cpx-in among granodioritic gneisses, opx-in in granitic gneisses, osmium-in in paragneisses and pigeonite in granitic gneisses (Fig. 2A). These isograds are not coeval: the cpx-in isograd is related to the 0.93 Ga thermal event (Bingen and van Breemen, 1998a; Bingen and Stein, 2003), opx-bearing assemblages have been recognized in both M1 and M2 phases, and available geochronological data suggest that the osumilite-in and pigeonite-in isograds are linked to the 0.93 Ga metamorphic phase (Möller et al., 2002). However, Bingen and Stein (2003) pointed out that the pressure–temperature conditions necessary for osumilite crystallization are similar to those of the molybdenite+orthopyroxene+garnet assemblage which they dated at 0.97 Ga. This observation gives strong support to the hypothesis that osumilite may have been formed during the regional metamorphism at 0.97 Ga. Moreover, the 973±4 Ma age obtained for the molybdenite+orthopyroxene+garnet assemblage in the Ørsdalen district (located on the opx-in isograd, about 15 km north-east of the AMC suite) unambiguously proves the existence of a granulite-facies basement in Rogaland before the emplacement of the post-collisional magmatism. Additionally, these authors noted that monazite from granulite samples collected west of the osumilite and pigeonite isograds gives ages between 1018±2 and 972±2 Ma indicating that the main granulite-facies in Rogaland took place between 1.03 and 0.97 Ga during regional metamorphism. It is also possible that the M2 phase was not a simple contact
metamorphism. Indeed, titanite ages from Rogaland–Vest Agder and Telemark are tightly grouped at 918±2 Ma and 913–901 Ma suggesting that a homogeneous regional cooling took place after the M2 metamorphic phase associated with the intrusion of the Rogaland intrusive complex at 0.93 Ga (Bingen and van Breemen, 1998b). Voluminous magmatism took place before and during the Sveconorwegian orogeny. In the Telemarkia terrane, the first recorded magmatic event took place at around 1.5 Ga forming abundant granitoids, and felsic and mafic volcanic rocks (Bingen et al., 2005). It includes the bimodal Rjukan Group in Telemark (Vernørk – Vm – mafic volcanics in

Fig. 2. (A) Geological sketch map of southwest Rogaland showing the Rogaland Anorthosite Complex and the location of the Lyngdal and Skoland gabbronorites (H) (F: Farsund, Ly: Lyngdal, Ho: Holm, K: Kleivan, Sv: Svöfjell) (after Falkum, 1982 and Bingen et al., 2006). (B) Geological map of the Rogaland anorthositic province. T = Tellnes dyke, T' = Tellnes ore body (after Michot and Michot, 1969; Falkum, 1982; Bolle et al., 2003a). The position of the new geochronological samples is also shown.
Fig. 1B) (Brewer and Menuge, 1998). The lack of older exposed magmatic rocks in the Telemarkia terrane does not exclude the presence of other crustal components (in metasediments) and/or of a concealed older lower crust (Andersen et al., 2001). Subsequent events of magmatism occurred at 1.28–1.26 Ga (Valdala – VI – mafic volcanics in Fig. 1B) (Bingen et al., 2002; Brewer et al., 2004), at 1.21–1.20 Ga (granite plutonism: Heaman and Smalley, 1994; Andersen et al., 2007b), and between 1.17 and 1.14 Ga (Gjuve and Morgedal – G–M – mafic volcanics in Fig. 1B) (Zhou et al., 1995; Brewer et al., 2002; Laajoki et al., 2002). Abundant “orogenic” phenocryst-bearing graniodiorites of the Feda and Fennefoss suites, discussed below, were intruded at 1.05–1.03 Ga (Bingen and van Bremen, 1998a) and are now deformed to augen gneiss (Fig. 2B). They possibly reflect a final subduction episode. Syn-collisional magmatism in the 1.03–0.97 Ga interval is apparently lacking in the Telemarkia terrane, but abundant post-collisional magmatism occurred mainly between 0.97 and 0.92 Ga. It includes the two magmatic suites which are the focus of this publication: the hornblende–biotite granitoids (HBG) suite, mainly occurring as a plutonic belt in the central part of the Telemarkia terrane east of the Opx-in isograd (0.97–0.93 Ga) (Andersson et al., 1996; Andersen et al., 2001; Bogards et al., 2003a; Vander Auwera et al., 2003), and the Rogaland Anorthosite–Mangerite–Charnockite suite, here referred to as an AMC suite as true granites are lacking, located in the granulitic gneisses west of the Opx-in isograd (e.g. Michot and Michot, 1969; Duchesne et al., 1985a) (0.93–0.92 Ga; Figs. 1B and 2B).

3. Analytical methods

To complement available database (see Section 4.3), additional analyses have been carried out. Firstly, trace elements (Table 1) and Sr, Nd, Pb isotopic data (Tables 2 and 3) were acquired on three fine-grained amphibolitic enclaves of the Feda augen gneiss: samples BB17a, BB120b and BB82b. These samples were crushed on a steel anvil and then ground into powders using planetary agate ball mills. Secondly, U–Pb geochronological data were obtained in several batches of 6 samples from 2, 5, 10 ppb) and international rock standards (BHVO-1, W1, GA, ACE). For these elements, the precision of one given set of elements was better than 0.000015 (2σ) from the Isotope Geology division at MRAC, Tervuren. Repeated analyses in a thermal ionization mass spectrometer (VG Sector 54) on pressed powder pellets with a precision better than 0.5% (Bologne and Duchesne, 1991). Other trace element concentrations were measured by ICPS at MRAC (Tervuren, Belgium). 0.3 g of sample mixed with 0.9 g of lithium tetraborate were fused at 1000 °C for 1 h. The glass was then dissolved in 5% HNO3. The major elements and Ni, Rb, Sr, Zr (XRF data) are from Bingen (1988). Abundant rock-forming elements are presented in Table 1, along with other trace elements measured by ICP-MS at MRAC (Tervuren, Belgium). 0.3 g of sample mixed with 0.9 g of lithium tetraborate were fused at 1000 °C for 1 h. The glass was then dissolved in 5% HNO3. The major elements and Ni, Rb, Sr, Zr (XRF data) are from Bingen (1988).

3.1. Trace element analyses

Rb and Sr have been measured with an ARL 9400 XP X-ray fluorescence (University of Liège) on pressed powder pellets with a precision better than 5% (Bologne and Duchesne, 1991). Other trace element concentrations were measured by ICPS at MRAC (Tervuren, Belgium). 0.3 g of sample mixed with 0.9 g of lithium tetraborate were fused at 1000 °C for 1 h. The glass was then dissolved in 5% HNO3. The calibrations were performed using both synthetic solutions (mixtures of one given set of elements at 2, 5, 10 ppb) and international rock standards (BHVO-1, W1, GA, ACE). For these elements, the precision ranges from 5 to 10% (see Navez, 1995).

3.2. Sr and Nd isotopes

After acid dissolution of the sample, and Sr and/or Nd separation on ion-exchange resin, Sr isotopic compositions were measured on a single filament and Nd isotopic compositions on triple Ta–Re–Ta filament in a thermal ionization mass spectrometer (VG Sector 54) from the Isotope Geology division at MRAC, Tervuren. Repeated measurements of Sr and Nd standards have shown that the between-run error is better than 0.000015 (2σ). During the course of this study, the NBS987 standard yielded a value for 87Sr/86Sr 0.706228 ± 0.000007 (2σ) on the mean of the 4 standards measured for each set of 16 samples, normalized to NBS987 = 0.710281 ± 0.000007 (2σ) on the mean of the 4 standards measured for each set of 16 samples, normalized to NBS987 = 0.710281 ± 0.000007 (2σ). The Rennes Nd standard, a value of 143Nd/144Nd = 0.511961 ± 0.000006 (2σ) on the mean of the 4 standards measured for each set of 16 samples, normalized to 146Nd/144Nd = 0.7219. All the ratios of the unknown have been normalized to the recommended values of 0.710250 for NBS987 and 0.511963 for Nd Rennes standard (corresponding to a La Jolla value of 0.511866). The decay constant for 87Rb (1.42 × 10–11 y–1) was taken from Steiger and Jäger (1977) and for 147Sm (6.54 × 10–12 y–1) from Lugmair and Marty (1978). Nd TDM model ages have been calculated following Vervoort et al. (2000).

3.3. Pb isotopes

The samples were dried at 40 °C and crushed in an agate mortar. About ~50 mg of powder were dissolved either in closed Teflon vessel enclosed in steel jackets using HF + HNO3 at 180 °C, or in Savillex® beakers using concentrated HF + HNO3 at 130 °C for 48 h, followed by evaporation, addition of 6 M HCl, second evaporation and final dissolution in HBr 0.5 N. Lead separation was performed using successive acid elutions on anionic resin (AG1-X8) (for further details see Weis et al., 2006). The entire chemical purification was carried out in a class 100 laminar air flow cabinet. Collected lead samples were then evaporated and dried residues were dissolved in 100 μl of concentrated HNO3, evaporated and finally dissolved in 1.5 ml of 0.05 M HNO3. Ti was added to each sample and standard, to control the instrumental mass fractionation. Solutions were prepared so as to obtain a Pb/Ti ratio of 4 or 5, a signal of 100 mV in the axial collector (204Pb) and to match the Pb and Ti concentrations of the standard (200 ppb Pb and 50 ppb Ti). Lead isotopes were measured at Université Libre de Bruxelles (Belgium) using a Nu Plasma Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) upgraded with an Edwards E2M80 high performance interface pump. The instrument was operated under wet plasma conditions with a Glass Expansion MicroMist nebulizer at a 10 μl flow rate.
Table 3

Pb isotopic composition of the Feda mafic facies.

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>206Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>208Pb/204Pb</th>
<th>Pb (ppm)</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>206Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>208Pb/204Pb</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB117b K enclave Feda</td>
<td>19.502</td>
<td>15.660</td>
<td>38.524</td>
<td>33</td>
<td>6.6</td>
<td>16.9</td>
<td>17.32</td>
<td>15.50</td>
<td>36.70</td>
<td>17.59</td>
<td>15.53</td>
</tr>
<tr>
<td>BB82b Amphibole-rich enclave Feda</td>
<td>17.921</td>
<td>15.521</td>
<td>37.003</td>
<td>8</td>
<td>0.66</td>
<td>1.1</td>
<td>16.97</td>
<td>15.45</td>
<td>36.50</td>
<td>17.09</td>
<td>15.46</td>
</tr>
<tr>
<td>BB120b Amphibole-rich enclave Feda</td>
<td>17.151</td>
<td>15.460</td>
<td>36.586</td>
<td>16</td>
<td>0.35</td>
<td>1.1</td>
<td>16.92</td>
<td>15.44</td>
<td>36.36</td>
<td>16.94</td>
<td>15.45</td>
</tr>
<tr>
<td>BB17 Amphibole-rich enclave Feda</td>
<td>17.556</td>
<td>15.507</td>
<td>37.363</td>
<td>17</td>
<td>0.75</td>
<td>1.2</td>
<td>17.06</td>
<td>15.47</td>
<td>34.87</td>
<td>17.12</td>
<td>15.48</td>
</tr>
<tr>
<td>BB17 (duplicate)</td>
<td>17.556</td>
<td>15.508</td>
<td>37.362</td>
<td>17</td>
<td>0.75</td>
<td>1.2</td>
<td>17.06</td>
<td>15.47</td>
<td>34.87</td>
<td>17.12</td>
<td>15.48</td>
</tr>
</tbody>
</table>

Isotopic and geochemical data for sample BB117b are from Bingen et al. (1993) and Bingen (1989). Parameters used in the calculations of initial ratios: \({ }^{238}\text{U} = 1.55125 \times 10^{-10} \) per year, \({ }^{235}\text{U} = 9.8485 \times 10^{-10} \) per year and \({ }^{232}\text{Th} = 4.9475 \times 10^{-15} \) per year.
sample uptake of 100 μl/min, fitted into a Peltier cooled (5 °C) Glass Expansion Cinnabar cyclonic spray chamber. Standard narrow-angle nickel cones were used. The certified reference material NBS981 (NIST) was repeatedly measured (n = 9) during the analytical session. Lead isotope ratios were obtained after mass bias correction using the exponential law and application of the standard bracketing method with the recommended values of Galer (1999). The NBS981 isotopic ratios were reproducible with mean values of 36.7162±0.0040 (2σ) for the 208Pb/204Pb ratio, 15.4972±0.0014 for the 207Pb/204Pb ratio, 16.9415±0.0015 for 206Pb/204Pb ratio. These values are in good agreement with the long term mean internal laboratory measurements (n ≈ 750), which are 36.7147±0.0063 (2σ), 15.4968±0.0022, 16.9402±0.0024.

3.4. U–Pb zircon geochronology

U–Pb geochronological data were collected by ion microprobe (Secondary Ion Mass Spectrometry, SIMS). Zircon grains were hand selected and mounted in epoxy resin, together with reference zircon chips. The grains were polished approximately to half thickness. Cathodoluminescence images (CL) were collected in a scanning electron

Fig. 3. U–Pb data on zircon from several intermediate and felsic rocks of the HBG and AMC suites. Cathodoluminescence (CL) images of selected zircon grains with locations of SIMS analyses are shown for each sample.
Table 4: SIMS-U-Pb geochronological data on zircon.

<table>
<thead>
<tr>
<th>Id</th>
<th>Z</th>
<th>U</th>
<th>Pb</th>
<th>206Pb</th>
<th>206U</th>
<th>207Pb</th>
<th>207U</th>
<th>208Pb</th>
<th>208U</th>
<th>208Pb</th>
<th>208U</th>
<th>208Pb</th>
<th>208U</th>
<th>208Pb</th>
<th>208U</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>11-1</td>
<td>165</td>
<td>370</td>
<td>0.4</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>1.1</td>
<td>1.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>150</td>
<td>360</td>
<td>0.4</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>1.1</td>
<td>1.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

7234, jotunite, Hida pluton, E: 359100, y: 6463000, (7, 9)

1235-01a, c 657 325 15735 0.2 6.641 3.0 0.06999 0.9 6.644 3.0 0.06999 0.9 0.514 1.2 0.156 1.1 0.59 950 18 953 24

66125, quartz jotunite, Eio-Rekfjord intrusion, Rekford, E: 339660, y: 6469000, (7, 9)

11-6 189 29736 0.1 6.293 0.9 0.0719 1.1 6.296 0.9 0.07086 0.9 1.487 1.2 0.157 1.1 0.59 950 18 953 24

66261, fayalite quartz magnetite, Bjerkreim-Sokndal intrusion, Kvitfjell, E: 321900, y: 6473500, (7, 9)

1235-01a, c 1141 438 225577 0.2 6.314 0.3 0.06999 0.3 6.317 0.3 0.06999 0.3 0.518 1.1 0.156 1.1 0.948 18 953 24

SV11, granite, Svöfjell pluton, HBG suite, S Ljosland, E: 406969, y: 6510493 (7, 8)

1235-01a, c 153 77 51853 0.4 6.644 0.9 0.06977 0.9 6.644 0.9 0.06977 0.9 1.487 1.2 0.157 1.1 0.59 950 18 953 24
microscope (Fig. 3) prior to U–Pb analysis. For one sample (SV11), the measurements were carried out on the Perth Consortium SHRIMP-II ion microprobe at Curtin University of Technology (Perth, Australia). Each analysis consisted of 6 scans through the mass range; the primary beam was about 20 μm in diameter and 4 nA in intensity. The data were reduced in a manner similar to that described by Williams (1998) and references therein, using the SQUID Excel Macro of Ludwig (2000). The Pb/U ratios were normalized relative to a value of 0.090586 for the 206Pb/204Pb of the BR266 reference zircon (Sri Lankan zircon), equivalent to an age of 559 Ma (Stern, 2001). For the five remaining samples, measurements were performed with a CAMECA 1270 ion microprobe at the NORDSIM Laboratory (Stockholm, Sweden) with a primary beam of ca. 20 μm in diameter, using the 91500 Geostandard reference zircon with an age of 1065 Ma (Wiedenbeck et al., 1995). Analytical protocols and data reduction follow Whitehouse et al. (1999) and Whitehouse and Kamber (2005). Data are reported in Table 4 and in inverse Terra–Wasserburg concordia diagrams in Fig. 3. Age calculations were performed using the Isoplot 3 Excel macro (Ludwig, 2003). In Fig. 3, analyses are plotted with a one sigma error ellipse, but all age calculations are reported at the two sigma level. The analyses are corrected for common Pb using the 204Pb signal, if this signal is above background. For the two samples characterized by zircon with low U content (66125, U = 77 ppm; 64104, U = 87 ppm), a 207Pb common Pb correction (projection of the uncorrected analysis on the concordia curve in the inverse concordia diagram from a common Pb composition) is regarded as more appropriate (Fig. 3).

4. Comparison between key Sveconorwegian magmatic suites

In the following, we will compare the geological setting, petrography and geochemistry of the Feda, HBG and AMC suites to setup their mutual links.

4.1. Geology

4.1.1. The Feda suite

The Feda suite is comprised of most of the augen gneiss bodies outcropping in the Rogaland–Vest Agder sector (Bingen, 1989; Bingen et al., 1993; Figs. 1B and 2A). The augen gneiss bodies are conformable with regional structural trends and show locally, in their center, less deformed rock volumes with preserved porphyritic igneous textures. They are interpreted as pre- to syn-tectonic amphibole–biotite granodioritic to granitic plutons rich in K-feldspar phenocrysts and defining an “orogenic” high-K calc-alkaline trend (Bingen and van Breenen, 1998a; Bingen et al., 2008). Uncommon gabbroic enclaves display lobate contacts with the enclosing granodiorites. Two types of enclaves are recognized: K-rich enclaves, which are similar in composition to lamprophyric magmas and can be included in Group III ultrapotassic rocks of Foley (1992); and amphibole-rich enclaves with a calc-alkaline affinity. Samples BB17a, BB120b and BB282 analyzed in this study belong to this last category. Given that these lobate enclaves are mingled in the main granodioritic magma, they represent penecontemporaneous magmatic rocks. Rocks of the Feda suite show LILE enrichment together with rather low Sr, positive εNd (at 1.05 Ga: Sr = 0.7035, εNd = +0.5, 206Pb/204Pb = 17.07, 207Pb/204Pb = 15.46) and Sr–Nd–Hf isotopic compositions of these granitoids distinguishing three groups of granitoids based on their Sr contents and Sr and Nd isotopic compositions. The Group 1 granites (normal Sr concentration granites) have less than 150 ppm Sr, 87Sr/86Sr < 0.705, εNd = +0.5, 206Pb/204Pb = 15.46 (average of initial isotopic values of 11 K-feldspar phenocrysts: Bingen et al., 1993). The main granodioritic to granitic Feda trend has been interpreted as being due to fractional crystallization, with high Sr and low Pb isotopic ratios (at 1.05 Ga: Sr = 0.7035, εNd = +0.5, 206Pb/204Pb = 17.07, 207Pb/204Pb = 15.46).

4.1.2. The HBG suite

The spatial distribution of the post-collisional granitoids is not random. They are concentrated along two major crustal boundaries, namely the Mandal–Ustaoset fault/shear zone and the Østfold–Marstrand boundary zone (Fig. 1A). Andersen (1997), Andersen et al. (2001) and Andersen et al. (2002a) undertook a comprehensive isotopic study (Sr, Nd, Pb, Hf) of these granitoids distinguishing three groups of granitoids based on their Sr contents and Sr and Nd isotopic compositions. The Group 1 granites (normal Sr concentration granites) have more than 150 ppm Sr, 87Sr/86Sr < 0.705, εNd = +0.5, 206Pb/204Pb = 15.46 (average of initial isotopic values of 11 K-feldspar phenocrysts: Bingen et al., 1993). The main granodioritic to granitic Feda trend has been interpreted as being due to fractional crystallization, with high Sr and low Pb isotopic ratios (at 1.05 Ga: Sr = 0.7035, εNd = +0.5, 206Pb/204Pb = 17.07, 207Pb/204Pb = 15.46) and εNd < 0. Group 3 is comprised of one peculiar granite (the Tovdal granite: Figs. 1A). The augen gneiss bodies are conformable with regional structural trends and show locally, in their center, less deformed rock volumes with preserved porphyritic igneous textures. They are interpreted as pre- to syn-tectonic amphibole–biotite granodioritic to granitic plutons rich in K-feldspar phenocrysts and defining an “orogenic” high-K calc-alkaline trend (Bingen and van Breenen, 1998a; Bingen et al., 2008). Uncommon gabbroic enclaves display lobate contacts with the enclosing granodiorites. Two types of enclaves are recognized: K-rich enclaves, which are similar in composition to lamprophyric magmas and can be included in Group III ultrapotassic rocks of Foley (1992); and amphibole-rich enclaves with a calc-alkaline affinity. Samples BB17a, BB120b and BB282 analyzed in this study belong to this last category. Given that these lobate enclaves are mingled in the main granodioritic magma, they represent penecontemporaneous magmatic rocks. Rocks of the Feda suite show LILE enrichment together with rather low Sr, positive εNd (at 1.05 Ga: Sr = 0.7035, εNd = +0.5, 206Pb/204Pb = 17.07, 207Pb/204Pb = 15.46) and Sr–Nd–Hf isotopic compositions of these granitoids distinguishing three groups of granitoids based on their Sr contents and Sr and Nd isotopic compositions. The Group 1 granites (normal Sr concentration granites) have less than 150 ppm Sr, 87Sr/86Sr < 0.705, εNd = +0.5, 206Pb/204Pb = 15.46 (average of initial isotopic values of 11 K-feldspar phenocrysts: Bingen et al., 1993). The main granodioritic to granitic Feda trend has been interpreted as being due to fractional crystallization, with high Sr and low Pb isotopic ratios (at 1.05 Ga: Sr = 0.7035, εNd = +0.5, 206Pb/204Pb = 17.07, 207Pb/204Pb = 15.46).
group 1 isotopic compositions are consistent with mixing between a depleted-mantle component and two components having an extended crustal history. Group 2 granites are low in Sr and restricted to northern-central Telemark. Recent geochronological data (Andersen et al., 2002a, 2007a) have shown that, with the exception of the Bessefellet (490 ± 19 Ma: Andersen et al., 2002a) and Torsdalfjell (990 ± 14 Ma: Andersen et al., 2007a) intrusions, group 2 granitoids range in age from 1.023 Ga to 1.168 Ga and are thus older than both the Sveconorwegian regional metamorphism and the HBG suite.

Vander Auwera et al. (2003a) performed a geochemical study of a selection of granitoids (Kleivan, Holum, Svojfjell, Rustfjellet, Valle, Bessefellet, Verhuxjerringi: Fig. 1B) occurring along the Mandal–Ustaoset fault and shear zone. These granitoids fall in the “normal Sr concentration group” (group 1) defined by Andersen et al. (2001) except Bessefellet which belongs to group 2. The selected granitoids have similar field and petrographic characteristics, as well as similar major and trace element compositions (Vander Auwera et al., 2003). Their mafic mineralogy is dominated by hornblende and biotite with clinopyroxene occurring only as relics in amphibole. The other minerals are plagioclase, K-feldspar, quartz, apatite, zircon, ilmenite and magnetite. Titanite and fluorite have also been observed. They have been referred to as the HBG (Hornblende and Biotite Granitoids) suite by Vander Auwera et al. (2003). The granitoids are felsic (Frost et al., 2001), mostly metaluminous and display elevated concentrations of Ga and incompatible elements, typical of A-type granites (Whalen et al., 1987). Bogaerts et al. (2003a) documented their rapakivi-like composition in a detailed petrological study of the Lyngdal granodiorite. On the basis of experimental data acquired on two different samples (quartz monzodiorite, granodiorite) of the Lyngdal intrusion, Bogaerts et al. (2006) concluded that its parent magma, quartz monzodioritic in composition, was emplaced in the upper crust (0.2–0.4 GPa) and was relatively wet (5 ± 1 wt.% H2O) and oxidized (oxygen fugacity at NNO to NNO + 1). Finally, thermo-rheological modeling performed on the Lyngdal granodiorite (HBG suite) suggests that final emplacement of the magma took place at the brittle/ductile transition of the crust which was shallow in this area due to a high heat flow of 100 mW/m² (Bogaerts et al., 2003b).

In the HBG suite, mafic components were recognized as lobate mafic microgranular enclaves (MME) (Barbarin and Didier, 1992) that are locally mingled in the more evolved compositions (monzodiorites, granodiorites) or as small intrusions spatially associated with the granitoids. Vander Auwera et al. (2008) used these mafic facies to show that the monzodioritic parent magma of the granitoids could be produced either by: a) partial melting of a mafic lower crust equivalent in composition to the observed mafic facies, or b) by fractional crystallization of this mafic component, although partial melting is better predicted by geochemical modeling. Either process produces abundant mafic rocks either as cumulates or restites. However, as such rocks are not observed at the present level of exposure, this differentiation step probably occurred in the lower crust. As discussed by Vander Auwera et al. (2008), the mainly leucogranitic composition of the Rustfelljet intrusion (Vander Auwera et al., 2003) is close to the composition of minimum melts, suggesting that it may result from partial melting of a more acidic crustal source.

The conclusions presented by Bogaerts et al. (2003a), Vander Auwera et al. (2003), Bogaerts et al. (2006), Vander Auwera et al. (2008) and in the present paper concern the HBG suite outcropping along the Mandal–Ustaoset Line. As these rocks have similar major and trace element concentrations (e.g. Pedersen and Konnerup-Madsen, 2000) and Sr, Nd and Pb isotopic compositions as the Telemark granitoids (Andersen et al., 2001), it is possible that these conclusions can be extended to all group 1 granitoids.

4.1.3. The AMC suite

The Anorthosite–Mangerite–Charnockite (AMC) suite of Rogaland (Figs. 1B and 2B), is composed of three massif-type anorhositess (Egersund–Ogna, Håland–Helleren, and Åna–Sira), a large layered intrusion (Bjerkreim–Sokndal), two smaller leucocratic bodies (Hidra, Garsaknatt) and a small volume of mafic rocks ranging in composition from high-Al gabbros to jotunites (hypersthene-bearing monzodiorites). Few high-Al gabbros, mostly occurring as dykes crosscutting the Egersund Ogna anorthosite, have been recognized (Charlier et al., 2010). The jotunites display a range of composition and are more abundant, especially the evolved jotunites sensu Vander Auwera et al. (1998). The jotunites occur as small intrusions, chilled margins or dykes (Duchesne, 1987; Duchesnes and Kernelissen, 2003). Among these dykes, the Tellnes dyke, that crosscuts the Åna–Sira anorthosite, displays a complete differentiation trend from jotunites to quartz mangerites (Wilmart et al., 1989). The rocks of the AMC suite are composed of plagioclase (+antiperthitic in the evolved compositions), orthopyroxene, clinopyroxene, ilmenite, magnetite, apatite, with K-feldspar (usually perthitic to mesoperthitic), zircon and quartz only in the differentiated facies. The AMC suite is characterized by the predominance of orthopyroxene among the ferromagnesian minerals (charnockitic suite) and the very low abundance of amphibole and biotite. Amphibole is lacking in the jotunites and mangerites and has only been observed locally in the quartz mangerites to charnockites (Dekker, 1978). In the upper part of Bjerkreim–Sokndal and in the Apophysis, a foliated sheet-like body extending southwards from the margin of the Bjerkreim–Sokndal intrusion (Fig. 2B), amphibole occurs as poikilitic grains in dm-sized patches of coarse-grained mangerites and quartz mangerites and as rims surrounding the Fe–Ti oxides (Duchesne and Wilmart, 1997; Bolle and Duchesne, 2007).

The Bjerkreim–Sokndal layered intrusion represents an important member of the Rogaland AMC suite (Fig. 2B). Its lower part is made up of a thick layered series subdivided in several megacyclic units (Wilson et al., 1996). Its upper part comprises more massive acidic rocks (mangerites, quartz mangerites, charnockites) that extend southwards into the Apophysis. Two different trends have been recognized in the upper acidic part of Bjerkreim–Sokndal: a two pyroxene-amphibole trend (PXT) that grades from two-pyroxene quartz mangerites to amphibole and two-pyroxene charnockites, and an olivine trend (OLT) that is comprised of olivine-bearing quartz mangerites and charnockites. The OLT has been interpreted as being genetically linked with the underlying cumulates of the Bjerkreim–Sokndal intrusion, whereas the PXT would be derived from a jotunitic melt which mingled with the resident magma (Duchesne and Wilmart, 1997). The Apophysis appears as a composite igneous body comprising coeval mafic to felsic magmas (Bolle and Duchesne, 2007). The differentiation trend of the felsic magmas in the Apophysis is slightly different, mineralogically and geochemically, than those (PXT, OLT) recognized in the upper part of Bjerkreim–Sokndal, suggesting that it preserves evidence for the existence of a third trend (APT) (Bolle and Duchesne, 2007).

Recent geochemical data on the composition of orthopyroxene and plagioclase megacrysts from the Egersund–Ogna anorthosite support the hypothesis that more than one parental melt composition is necessary to account for the petrogenesis of the whole AMC suite (Duchesne and Demaille, 1978; Duchesne et al., 1985a; Duchesne and Hertogen, 1988; Vander Auwera and Longhi, 1994; Charlier et al., 2010). As jotunitic chilled margins were sampled around the Hidra leucocratic body (Duchesne et al., 1974; Demaille and Hertogen, 1981) and the Bjerkreim–Sokndal layered intrusion (Duchesne and Hertogen, 1988; Robins et al., 1997), jotunites were considered as possible parental melts for these intrusions in agreement with experimental data later acquired on a primitive (high Mg#) jotunite (Vander Auwera and Longhi, 1994). However, based on the high Cr content measured in the high-Al orthopyroxene megacrysts of the Egersund–Ogna anorthosite, a more basaltic parental melt was proposed for this intrusion (Duchesne et al., 1985a; Duchesne and Maquil, 1987). Duchesne and Maquil (1987) also indicated that the plagioclase megacrysts from the Egersund–Ogna anorthosite display
cryptic geographical variation: high-Sr (720–1090 ppm) andesine in the center and low-Sr (320–620 ppm) labradorite in the margin (Charlier et al., 2010). Based on experimental data on a high-Al gabbroic composition (HLCA) (Fram and Longhi, 1992) and a primitive jotunite (TJ) (Vander Auwera and Longhi, 1994) and on the increasing partition coefficient of Cr in orthopyroxene with pressure (Vander Auwera et al., 2000), it was later suggested that the central part (andesine anorthosite) of the Egersund–Ogna anorthosite could have crystallized from a jotunitic parent magma slightly more magnesian and more anorthitic than the experimentally studied TJ composition (Longhi et al., 1999). This hypothesis was further tested by Charlier et al. (2010). These authors concluded that the high Mg # (55–79) of the orthopyroxene from the center and the margin of the Egersund–Ogna anorthosite cannot be produced from a primitive jotunite more magnesian than TJ. They thus proposed that the central and marginal anorthosites from this intrusion both had a high-alumina basaltic parental melt but with different CaO, Sr, Mn and Cr contents. A range of parental melt composition, from high-Al basalts to primitive jotunites, appears thus necessary to account for the petrogenesis of the AMC suite.

Experimental data on the liquidus equilibria of a high-Al basalt (HLCA) and a primitive jotunite (TJ) indicate that between 10 and 13 kbar, the pressure conditions necessary to produce the characteristic high-Al orthopyroxene megacrysts (Longhi et al., 1993), these compositions straddle the thermal divide on the plagioclase+pyroxene liquidus surface (Longhi et al., 1999). This observation requires that these melts were produced by partial melting of a gabbroanoritic lower crustal source (Longhi et al., 1999). Plausible compositions for this lower crustal source have been discussed in detail by Longhi et al. (1999) and Longhi (2005). Average compositions of a lower granulitic crust (Rudnick and Fountain, 1995) are possible, but the bulk composition of the Stillwater Banded Zone appears as a better candidate given its higher Mg# (Longhi et al., 1999; Longhi, 2005). Also, as mentioned by Longhi et al. (1999) and Longhi (2005), the upper part of layered mafic intrusions usually contains cumulates with higher concentrations of K, Ti and P which make them possible sources for jotunitic magmas. These authors further proposed that foundering of gravitationally unstable mafic to ultramafic masses in the upper mantle (Arndt and Goldstein, 1989) might induce their partial melting. Other possible scenarios for melting the lower crust have been proposed: magmatic heating from below, crustal thickening, thrusting of tongues of lower crust into the mantle (Duchesne et al., 1999; Longhi et al., 1999). This latter process has been discussed in more detail by Duchesne et al. (1999). Based on the work of Andersson et al. (1996) who interpreted large Moho offsets in deep seismic profiles as resulting from Sveconorwegian crustal underthrusting, these authors suggested that underthrust crustal tongues of mafic lower crust were heated to their solidus to produce the parent magma of the AMC suite because of thermal relaxation of several tens of million years together with asthenospheric uprise due to delamination along the shear zone (see also Lundmark and Corfu, 2008). Duchesne et al. (1999) also emphasized that the uprise of the anorthositic crust mushes and magmas were channelled by the presence of major lithospheric structures as is observed in other anorthositic provinces (e.g. Emslie et al., 1994; Scoates and Chamberlain, 1997; Wiszniewska et al., 2002). Finally, based on the occurrence of eclogite facies rocks in the Eastern segment, Brueckner (2009) recently proposed that during subduction of the Eastern Segment of Fennoscandia, the subducted continental crust separated in two parts: the shallower one was exhumed as the HP eclogites of the Eastern Segment whereas the lower part remained in the upper mantle. These authors proposed that this lower mafic part of the Eastern Segment crust subducted further to the west and was progressively metamorphosed to amphibolite, granulite and eclogite facies providing the source for the AMC and HBG suites. Brueckner (2009) indeed acknowledged that the source of the AMC suite is anhydrous whereas that of the HBG suite is hydrous as already discussed by Vander Auwera et al. (2008). Brueckner (2009) also suggested that the eclogitized crust detached and sunk into the mantle allowing upwelling of the asthenosphere and concomitant heating and partial melting of the stranded granulitic to amphibolitic subducted crust. This last model has some similarities with the crustal tongue model of Duchesne et al. (1999). However, the REE patterns of plausible AMC parent magmas display low (La/Yb)_N precluding the presence of garnet in their source. Thus, partial melting must have occurred outside the stability field of garnet for these compositions, i.e. at a pressure ≤1.6 GPa (Fram and Longhi, 1992; Vander Auwera and Longhi, 1994). Consequently, given the large distance between the Eastern Segment and the AMC suite (about 380 km) together with the maximum 1.6 GPa pressure of partial melting, the inferred subduction angle is an implausible 3°.

Modeling of the differentiation of the primitive jotunitic magma using fine-grained samples (LLD) has shown that quartz mangerites can be produced by extreme differentiation of primitive jotunites. However, as pointed out by Duchesne et al. (1985b), Demaille et al. (1986) and Vander Auwera et al. (1998) it is also possible that part of the acidic rocks of the Rogaland Anorthosite Complex were produced directly by partial melting of the crust. Field and petrological evidence (low H_2O in the granulite wall rock as evident from occurrence of osmullite (Holland et al., 1996), very few pegmatites and hydrous phases) indicate differentiation under nearly anhydrous conditions. Estimates of fO_2 range from FMQ+1.3 to ca.FMQ-1 (Duchesne, 1972; Duchesne et al., 1989; Vander Auwera and Longhi, 1994; Duchesne et al., 2008), lower than or overlapping with the FO_2 range reported for the HBG suite (NNO to NNO+1: Bogaerts et al., 2006).

Both magnetite and ilmenite have been observed in the HBG and AMC suites, but the magnetite/ilmene ratio appears to be higher in the HBG suite. This observation is supported by published data on the magnetic susceptibility of bulk samples representative of liquid compositions and ranging in composition from 57 to 74% SiO_2. As shown on Fig. 4, there is some overlap in the range of magnetic susceptibilities obtained in the two suites but in the AMC suite, the bulk magnetic susceptibility of most samples ranges between 0 and 30 mSI compared to 40 and 90 mSI in the HBG suite. This is corroborated by recent results of Brown and McEnroe (2008) who showed that in the three massif type anorthosites of the AMC suite, namely Egersund–Ogna, Åna–Sira and Haland–Helleren (Fig. 2B), magnetite is rare or only locally observed whereas hemo-ilmenite is a common accessory phase, the magnetic susceptibility being correlated with the proportion of magnetite present in their samples. It has been experimentally shown that the relative stability of the Fe–Ti oxides is strongly controlled by oxygen fugacity and that a higher FO_2 increases the stability field of magnetite (Buddington and Lindsay, 1964; Frost, 1991; Snyder et al., 1993; Toplis and Carroll, 1995). However, crystallization of ilmenite is enhanced by a high TiO_2 content in the magma (Toplis and Carroll, 1995). As the AMC and HBG suites have similar TiO_2 contents, the higher proportion of magnetite in the HBG suite probably reflects a higher FO_2 during crystallization. Bogaerts et al. (2006), using experimental data, proposed an FO_2 of NNO to NNO+1 during the differentiation of the Lyngdal intrusion whereas for the AMC suite, FO_2 between FMQ-1 and NNO have been proposed (Duchesne, 1972; Vander Auwera and Longhi, 1994; Brown and McEnroe, 2008).

4.2. Geochronology

Four granodioritic to granitic augen gneiss bodies of the Feda suite, the ‘orogenic’ intrusions predating the emplacement of the post-collisional suites, distributed over 100 km across regional structural trends and across the orthopyroxene isograd yield a very consistent intrusion age of 1051 ±2/–8 to 1049 ±2/–8 Ma (Bingen and van Breen, 1998a). Metamorphic monazite in clinopyroxene and/or orthopyroxene-bearing samples ranges mainly between 1024 and
925 Ma recording M1 and M2 high-grade metamorphism respectively (Bingen and van Breemen, 1998b). The Fennefoss augen gneiss in the Telemark sector is distinctly younger than the Feda suite as it intruded at 1035±3 Ma (Bingen and van Breemen, 1998a) and it is also geochemically distinct.

The oldest dated but arguably post-collisional pluton is the Grimstad granite in the Bamble terrane. It has an age of 989±9 Ma (Kullerud and Machado, 1991). In the Telemarkia terrane, post-collisional plutons forming the HBG suite range in age between 970 and 932 Ma. The most reliably dated plutons are the Vrådal pluton in the Telemark sector is distinctly younger than the Feda suite as it intruded at 940±10 (Andersen et al., 2002a) and the Verhuskjerringi granite at 932±4 Ma (Andersen et al., 2007a).

A new age determination is reported here for the Svöfjell pluton which is one of the largest HBG plutons exposed along the Mandal–Ustaoset fault and shear zone. In granite sample SV11, seven elongate prismatic zircons with oscillatory-growth zoning were analyzed. Data are nearly concordant within error limits. Data corrected for common Pb yield a concordia age of 942±10 Ma (MSWD of concordance + equivalence = 2.2, Th/U = 0.53, Fig. 3A). No inherited zircon cores were detected. The 942±10 Ma estimate is interpreted as the crystallization age of the Svöfjell pluton, in the range known for the HBG suite.

The age of crystallization of the three large massif type anorthosite bodies in the AMC suite was measured by Schärer et al. (1996) using zircon included in orthopyroxene megacryst aggregates. Three equivalent ages of 932±3, 932±3 and 929±2 Ma were derived for the Håland–Helleren, Åna–Sira and Egersund–Ogna anorthosites respectively. A quartz-mangerite from the Tellnes dyke crosscutting the Åna–Sira anorthosite gives an equivalent age of 931±7 Ma while the associated Tellnes ilmenite norite yields a significantly younger age of 920±3 Ma. To improve data coverage, new data were collected from 10 zircons. All but two analyses are concordant and yield a 207Pb corrected 206Pb/238U intercept age of 931±8 Ma (Fig. 3C) equivalent to a weighted mean 206Pb/238U age of 930±8 Ma. These ages are equal to the age of 932±3 Ma for the adjacent Håland–Helleren anorthosite (Schärer et al., 1996).

Sample 66125 is a quartz jotunite (monzonorite) from the Eia–Rekefjord intrusion, which is an elongate jotunite to mangeritic body at the interface between the Bjerkreim–Sokndal intrusion and the Håland–Helleren anorthosite (Duchesne et al., 1974). The Eia–Rekefjord intrusion is younger than the Håland–Helleren anorthosite, since dykes interpreted as emanating from this intrusion crosscut the anorthosite. Zircons show a core–rim structure, with a generally non-luminescent core and a luminescent low-U rim. The rim is coarse, xenomorphic and locally hat-shaped (Fig. 3C), suggesting an overgrowth process by subsolidus redistribution of Zr originally hosted in ilmenite, as described in Bingen et al. (2001), Charlier et al. (2007) and Morisset and Scoates (2008). Six analyses in six zircon cores are concordant to slightly discordant. They have an average Th/U ratio of 1.02 characteristic of magmatic crystallization. They yield a 207Pb corrected 206Pb/238U intercept age of 932±8 Ma (Fig. 3C) equivalent to a weighted mean 206Pb/238U age of 930±8 Ma. These ages are equal to the age of 932±3 Ma for the adjacent Håland–Helleren anorthosite (Schärer et al., 1996).

Sample 66261 is a fayalite-bearing quartz mangerite from the upper part of the Bjerkreim–Sokndal intrusion. It represents the olivine trend (OLT) genetically linked with the underlying cumulates and hybridized with new magma (Duchesne and Wilmart, 1997). Zircons of this sample are commonly characterized by a high-U core surrounded by an oscillatory-zoned mantle (Duchesne et al., 1987a). Nineteen analyses were performed in 10 zircons. All but two analyses are concordant and contain background level common Pb. Five non-luminescent high-U cores have U concentrations higher than 500 ppm (average U = 1020 ppm and Th/U = 0.48). They yield a concordia age of 931±7 Ma (MSWD = 1.6, Fig. 3D). Other cores and mantles have U concentrations lower than 300 ppm (average U = 150 ppm and Th/U = 0.35), and yield a significantly younger, though overlapping, concordia age of 919±8 Ma (MSWD = 1.12, Fig. 3D). The data suggest that the high-U cores crystallized at 931±7 Ma in the residual magma left after crystallization of the cumulates, whereas the rims crystallized at 919±8 Ma, only after mixing of this resident magma with a new batch of acidic magma. The age of 931±7 Ma represents the best available estimate for the crystallization of the Bjerkreim–Sokndal layered series.

Sample 64110 is a quartz mangerite also from the upper part of the Bjerkreim–Sokndal intrusion. It belongs to the two pyroxenes–amphibole trend (PXT), presumably derived from a jotunitic melt mingled with the resident magma (Duchesne and Wilmart, 1997).
Zircon cores of this sample are also commonly characterized by a non-luminescent high-U core surrounded by an oscillatory-zoned mantle (Duchesne et al., 1987a). Eighteen analyses were performed in 11 zircons. The analyses are concordant and contain background level common Pb. Three analyses of high-U cores (U > 500 ppm) yield a concordia age of 918 ± 8 Ma, equivalent to the concordia age of 922 ± 7 Ma for 15 analyses of mantles and cores moderately rich in U (U < 320 ppm). The pooled dataset (18 analyses) yield a concordia age of 920 ± 6 Ma (MSWD = 0.83), giving the best estimate for crystallization of this rock (Fig. 3E). This result supports the interpretation that part of the upper part of the Bjerkreim–Sokndal intrusion results from the crystallization of a batch of acidic magma distinctly younger (ca. 920 Ma) than the magmas that generated the cumulates (ca. 931 Ma).

Sample 64104 is a jotunite (monzonorite) from the Lomlad monzonoritic dyke. This dyke is more than 20 km long and crosses the Eigersund–Ogna anor286hite and the layered series of the Bjerkreim–Sokndal intrusion (Duchesne et al., 1985b). It shows a continuous variation from norite to jotunite. The sample contains luminescent, low-U, oscillatory zoned zircon commonly overgrown by a rim. Nineteen analyses were performed in 13 zircon cores, including cores and rims. The analyses have U concentrations lower than 87 ppm and a Th/U ratio of 0.47. All but one analysis yield a well grouped 206Pb/238U intercept age of 916 ± 9 Ma (MSWD = 0.47; Fig. 3F) equivalent to a weighted mean 206Pb/238U age of 919 ± 8 Ma. The age of 916 ± 9 Ma is regarded as the best estimate for the crystallization of the dyke. It is equivalent to the age of the Tellnes ilmenite norite (920 ± 3 Ma), and provides independent evidence for a generation of jotunite magmas at around 920 Ma emplaced in crosscutting structures.

The analyses have U concentrations lower than 87 ppm and a Th/U ratio of 0.47. All but one analysis yield a well grouped 206Pb/238U intercept age of 916 ± 9 Ma (MSWD = 0.47; Fig. 3F) equivalent to a weighted mean 206Pb/238U age of 919 ± 8 Ma. The age of 916 ± 9 Ma is regarded as the best estimate for the crystallization of the dyke. It is equivalent to the age of the Tellnes ilmenite norite (920 ± 3 Ma), and provides independent evidence for a generation of jotunite magmas at around 920 Ma emplaced in crosscutting structures.

The data by Schärer et al. (1996) bracket the entire AMC suite within a 12 million year interval. The new data confirm this time bracket and show that the main magmatic pulse took place at 933–929 Ma, leading to formation of the massif-type anorthosites, satellite leuconorite plutons (Hidra pluton), the Bjerkreim–Sokndal layered intrusion and a number of minor occurrences of monzonorite (Eia–Rekeford intrusion, Tellnes dyke). A second minor magmatic pulse took place at 920–916 Ma and corresponds to the intrusion of jotunite magmas and related acidic melts in dykes (Tellnes ilmenite norite, Lomlad dyke) and at the roof of the Bjerkreim–Sokndal intrusion during the final stage of sagging of the lower part of the intrusion (Bolli et al., 2000), resulting in crystallization of part of the mangerite–charnockite sequence at the top of this intrusion. The data underscore the composite nature of the Bjerkreim–Sokndal intrusion.

4.3. Geochemistry

The geochemistries of the AMC and HBG suites are compared using available databases. For the AMC suite, the following data have been employed: the Apophysis of the Bjerkreim massif-type anorthosites, satellite leuconorite plutons (Hidra pluton), the Bjerkreim–Sokndal layered intrusion (Duchesne and Wilmart, 1997), and finally the geochemical trend of the Tellnes dyke and in fine-grained samples (LLD) interpreted as representing the jotunite differentiation trend of the Rogaland AMC suite (Duchesne and Maquil, 1987; Wilmart et al., 1989; Robins et al., 1997; Vander Auwera et al., 1998; Bolle et al., 2003a). For the HBG suite, we have employed data from the granitoids emplaced in the Rogaland–Vest Agder sector close to the Manda–Ustaoset fault and shear zone: Lyngdal, Tranevåg, the Red granite, Svolfjell, Valle, Rustfjellet, Holum and the gabbronorites (Demajje et al., 1990; Bogaerts et al., 2003a; Vander Auwera et al., 2003). The Tranevåg and Red granite bodies are located in the southernmost part of the Lyngdal intrusion and were recognized as separate bodies by Falkum et al. (1979) and Bogaerts et al. (2003a). Additional isotopic data are from Weis (1986), Bingan et al. (1993), Barling et al. (2000), Andersen et al. (2001), Dupont (2003) and Dupont et al. (2005). In the following, special attention will be given to the least differentiated compositions observed in both suites: the primitive jotunites and high-Al gabbronorites in the AMC suite, and the gabbronorites and mafic enclaves in the HBG suite.

4.3.1. Major and trace elements

According to the classification of Frost et al. (2001) and Frost and Frost (2008), both the AMC and HBG suites are ferroan (Fig. 5) and display geochemical features characteristics of an A-type signature, namely elevated contents of Ga (Ga/Al ×10000 > 2.6) (not shown) and incompatible elements (Zr + Nb + Ce + Y > 350 ppm) (not shown). However, the AMC suite is alkalic to alkali-calcic whereas the HBG suite is frankly alkali-calcic, the AMC trend is higher in K2O, FeO/Fe2O3 + MgO and lower in CaO and MgO. The two trends overlap in TiO2 (not shown) and to a lesser extent in P2O5. The mafic facies of both suites have overlapping major element compositions.

In order to take into account the position of one particular sample on the differentiation trend of each suite, we have compared each sample to the interpolated composition of a reference series at the same SiO2 content as proposed by Liégeois et al. (1998). The reference series used here is the one proposed by Liégeois et al. (1998) i.e., the Yenchichi–Telabat series (Fig. 6). The normalized spider diagram shows that the AMC suite is lower in Rb, U, Th, Sr, CaO, Ce, Nd, Sm and higher in Zr, Hf and Fe2O3 than the HBG suite.

4.3.2. Sr, Nd and Pb isotopes

The Sr, Nd and Pb isotopic data clearly distinguish the HBG and AMC suites as shown on Fig. 7 where isotopic ratios have been calculated to the average emplacement age of the suites, respectively 0.93 Ga for the AMC suite and 0.95 Ga for the HBG suite. Data for the Feda suite are also shown.

In a 204Pb/206Pb vs. 206Pb/204Pb diagram (Fig. 7), the least differentiated compositions of both suites have a similar range of ratios: AMC: (207Pb/204Pb)i = 15.48–15.54 and (206Pb/204Pb)i = 17.28–17.66; HBG: (207Pb/204Pb)i = 15.50–15.52 and (206Pb/204Pb)i = 17.42–17.49, but intermediate and acidic members of the HBG suite evolve toward low Pb isotopic ratios, whereas intermediate members of the AMC suite evolve to high Pb isotopic ratios.

The Sr and Nd isotopic (Fig. 7) composition of jotunitic and acidic members of the AMC suite have been studied in detail by Bolle et al. (2003a). These authors reported that the AMC suite starts from rather low 87Sr/86Sr0.7040 (0.7040–0.7060) and positive εNd (+4.7 to +1.2) in the primitive jotunites (the parent magmas of several members of the AMC suite) and evolves to high 87Sr/86Sr0.7070–0.7073) and lower to negative εNd (−1.4 to −1.7) in the felsic plutons. These authors interpreted this isotopic trend as contamination of the primitive jotunite magmas with a LILE-enriched crustal component and were able to reproduce this observed trend using a binary mixing model between these two components. The crustal contaminant, referred to as C1 by Bolle et al. (2003a), corresponds to an average isotopic composition of the Pre-Sveconorwegian rocks of southern Norway. It has been estimated using available coupled Sr and Nd isotopic data on the surrounding gneisses (Vander Auwera et al., 2003) and on amphibolite–granulite-facies metasediments from the Bamble sector which are isotopically similar to the surrounding gneisses (Andersen et al., 1995; Knudsen et al., 1997) (Fig. 7). Available Pb isotopic data (see above) further indicate that this crustal contaminant must be characterized by high Pb isotopic ratios. The least differentiated compositions of the HBG suite, the gabbronorites, have low 87Sr/86Sr0.7042 (0.7042–0.7054) and positive εNd (+2.0 to +4.0) that overlap the compositions of the mafic facies of the AMC suite. However, contrarily to what is observed for the AMC suite, the intermediate and acidic members of the HBG suite evolve at nearly constant 87Sr/86Sr0.7042 (0.7042–0.7060) towards very negative εNd (−9.0 to −5), implying a strikingly different crustal contaminant as discussed by Andersen et al. (1994), Knudsen et al. (1997), Bolle et al. (2003a), Vander Auwera et al. (2008) and referred to as contaminant C2 by Bolle et al. (2003a) and Vander Auwera et al. (2008). This crustal
contaminant was initially defined by Andersen et al. (1994). It corresponds to the source region of the Ubergsmoen metacharnockite (1.12 Ga), an augen gneiss unit emplaced in the Bamble sector and belonging to the Gjerstad suite (1.19–1.13 Ga) (Bingen and van Breeken, 1998a). The Sr and Nd isotopic trends of the group 1 granites has been predicted by mixing of a primitive component and this crustal contaminant C2 (Andersen et al., 2001).

The intermediate and acidic members of the Feda augen gneisses mimic the trend of the HBG suite in the εNd–Sr and 206Pb/204Pb–207Pb/204Pb (Fig. 7) diagrams indicating that contamination in this magmatic suite has involved the same contaminant C2. Interestingly, the mafic facies of the Feda suite have initial Sr, Nd and Pb isotopic compositions which are very similar to those of the mafic facies of the HBG and AMC suites (Fig. 7). In the 206Pb/204Pb–207Pb/204Pb diagram (Fig. 7), the ultrapotassic enclave (sample 117b of Bingen et al., 1993: Table 3) has initial Pb isotopic compositions, calculated at 1.05 and 0.93 Ga, which overlap with the isotopic compositions of the HBG and AMC mafic suites whereas the amphibole-rich enclaves have lower Pb isotopic ratios indicating the involvement of the C2 contaminant. In the Sr–εNd diagram (Fig. 7), the reverse situation is observed. One of the amphibole-rich enclaves (sample BB82b: Table 2) has Sr and Nd isotopic compositions which overlap those of the HBG and AMC mafic facies whereas the ultrapotassic enclaves have lower εNd suggesting the involvement of the C2 contaminant.

5. Discussion and geological implications

5.1. Structure of the Sveconorwegian continental crust

The differentiation trends outlined by the three suites (AMC, HBG, Feda) in the εNd–Sr and 206Pb/204Pb–207Pb/204Pb, 208Pb/204Pb–207Pb/204Pb) diagrams indicate two contrasting older crustal contaminants, as already stressed by Andersen et al. (2001), Bolle et al. (2003a) and Vander Auwera et al. (2008). The C2 crustal contaminant of the HBG and Feda suites is characterized by low Rb/Sr, U/Pb and Sm/Nd ratios. An old granulitic crust, depleted in U and Rb during its granulitic dehydration, is a plausible candidate. The mean Nd TDM of the HBG suite is around 1.6 Ga (see Andersen et al., 2001; Vander Auwera et al., 2003), an intermediate age between the primary component, the component observed in the least differentiated facies of the three suites, and the old contaminant, which suggests that this later component should be older than 1.6 Ga. In the AMC suite, the crustal contaminant C1 is characterized by higher Rb/Sr, U/Pb and Sm/Nd ratios than the C2 contaminant. Based on the Nd TDM model ages of the AMC suite (mean: 1.6 Ga: see Bolle et al., 2003a), this C1 contaminant should also have an age older than 1.6 Ga. Moreover given its high Sr isotopic ratio at 0.93 Ga, its Rb/Sr ratio was not decreased during an old granulitic dehydration process as it was for contaminant C2. The hypothesis that crustal contaminants C1 and C2 could be older than 1.6 Ga is in agreement with results from Andersen et al. (2001) and Andersen et al. (2002b). Indeed, based on the Sr–Nd–Pb–Hf isotopic compositions of their group 1 granites, these authors concluded that these granites display evidence of a crustal component having a crustal history extending back to 1.7–1.9 Ga. However, no rocks older than 1.55 Ga have been found in the Telemarkia terrane (Bingen et al., 2005).

The identification of two different crustal contaminants with different metamorphic histories in the HBG and AMC suites has implications for the structure of the Sveconorwegian continental crust. Indeed, this suggests that these two contaminants could correspond to two major lithotectonic units in which the AMC and HBG suites were emplaced. A Moho offset recognized southeast of the Rogaland anorthositic complex (Andersson et al., 1996) could be interpreted as the trace of a major crustal boundary (Duchesne et al., 1999). Duchesne et al. (1999) proposed that this boundary may be marked by the Feda augen gneiss in the same way as augen gneiss marks the southern part of the Mandal–Ustaoset line (Sigmond, 1985) (Fig. 1). Bolle et al. (2010) discuss in detail the exact location of a crustal lineament possibly linked to the Moho offset. The observation that the south Rogaland Anorthosite Province appears to be devoid of rocks belonging to the HBG suite that contain the C2
signature, whereas the region bearing the HBG granitoids lack AMC rocks with the C1 signature supports this hypothesis.

5.2. Lower crustal sources of the HBG and AMC mafic facies

The comparable composition of the mafic facies of the AMC (primitive jotunites, high-Al gabbros) and HBG (gabbronorites) suites was previously noted by Demaiffe et al. (1990), Vander Auwera et al. (2003) and Vander Auwera et al. (2008). As shown above, this similarity is also true for Sr, Nd and Pb isotope data. All three isotopic systems point to a source, here referred to as the primary component, having only a minor participation of old continental crust. This is particularly evident from the Pb isotopic signatures, which are very sensitive to contamination by old crust. Given the largely overlapping Sr, Nd and Pb isotopic compositions of the mafic facies in both suites, we consider that this primary component is the same in the two suites. Using experimental data acquired on plausible parent magmas of massif-type anoroxites including primitive jotunites and high-Al gabbros, Longhi et al. (1999) and Longhi (2005) showed that these compositions lie on thermal highs in relevant phase diagrams and that consequently these parent magmas were produced by melting of lower crustal sources rather than by fractionation of mantle melts (see Section 4.1.3). This hypothesis was extended to the gabbroritones, parent magmas of the HBG suite, because their compositions are close to those of primitive jotunites (Vander Auwera et al., 2008). The isotopic and experimental constraints thus support the hypothesis that the mafic facies of the two suites were produced by partial melting of lower crustal sources that had the same isotopic composition. We will now evaluate the mafic magmatism events which could possibly generate the primary component of these post-collisional magmatic suites. For this we will consider the events belonging to the SW part of the Fennoscandia shield and that are older than the HBG and AMC suites.

The main events of Mesoproterozoic mafic magmatism in South Norway (Fig. 1) include the 1.05 Ga Feda suite mafic facies as well as the volcanic sequences of Gjuve–Morgedal (1.16 Ga, central Telemark), Valldal (1.26 Ga, Rogaland–Hardangervidda) and Vemork (1.50 Ga, central Telemark). As summarized in Section 4.1.1, the Feda suite displays a typical high-K calc-alkaline orogenetic trend which possibly represent subduction related granitoids or syn-collisional granitoids emplaced during the late Sveconorwegian orogenic phase (Bingen et al., 2005). The Gjuve–Morgedal metabasalts belong to the Hoydalsmo group of the Telemark supracrustal sequence (Dons, 1960; Laajoki et al., 2002). Similarly, the Valldal metabasalts are part of the Valdal volcano-sedimentary sequence that is considered as a possible equivalent of part of the Telemark supracrustal belt in the Rogaland–Hardangervidda. Brewer et al. (2002) and Brewer et al. (2004) related the Gjuve–Morgedal and Valdal metavolcanics to a long-lived convergent margin based on their Nd isotopic composition and the presence of a negative Nb anomaly in their primitive mantle normalized spider diagrams. Brewer et al. (2002) and Brewer et al. (2004) inferred that they were emplaced in an environment of...
continental back-arc extension related to subduction along the western margin of Baltica. Bingen et al. (2003) discussed the possibility that the Gjøve–Morgedal metabasalts belonged to an environment similar to the one of the Basin and Range Province. They proposed that this mafic volcanism took place in the context of an extensional to transtensional regime that possibly followed cessation of a subduction regime. The older Vemork metabasalts are part of the Rjukan group of the Telemark supracrustal belt. These metabasalts extruded during an important magmatic event dated at 1.52 to 1.48 Ga that represents a major continental growth whose geotectonic setting is not clear (Bingen et al., 2005). The Sr isotopic composition of the Vemork, Valdall and Gjøve–Morgedal metabasalts has been disturbed during the Sveconorwegian greenschist facies metamorphism (Brewer et al., 2002, 2004), so only Nd isotopes will be used to evaluate if these formations could potentially represent the source of the primary component of the HBG and AMC suites. A summary of Nd isotopic compositions is shown in Fig. 8. εNd and the evolution of these potential sources are compared with the HBG and AMC mafic facies at 0.95 and 0.93 Ga, respectively. In the case of the oldest event, the Vemork formation, the εNd of most mafic facies is too low to account for the Nd isotopic compositions of the HBG and AMC suites. Also, model ages obtained for the AMC suite do not support the oldest event. Indeed, as discussed by Bolle et al. (2003a), the least differentiated compositions of the AMC suite (primary jutunites and anorbonitites) have young model ages (Nd TDM) ranging from 1.35 to 1.10 Ga, which imply a short crustal residence time (less than 0.2–0.4 Ga: Bolle et al., 2003a). Similarly, in the HBG suite, the Tovdal granitoid (0.94 Ga, Sr = 0.70427, εNd = +4.4) has a young TDM model age of 1.03 Ga (Andersen et al., 2001, 2002a). The εNd of the mafic facies of the Valdall and Gjøve–Morgedal formations are high enough to account for the Nd isotopic composition of the HBG and AMC suites contrary to the mafic facies of the Feda suite that display too low εNd. Nevertheless, two observations favor the Feda mafic facies as sources for the AMC and HBG suites: 1) the Sr and Pb isotopic compositions are very similar to those of the mafic facies of the HBG and AMC suites; 2) the Feda suite is the youngest event preceding the emplacement of the AMC and HBG suites. Consequently, in the current state of knowledge, the Feda suite mafic facies, as well as the Valdall and Gjøve–Morgedal metabasalts are considered as candidates. It is worth noting that even if the geodynamic context of these events remains of course speculative, it seems that they are related in space and time to a subduction event. This is in agreement with what is currently known about the anorbonitites of the Grenville Province. There, most workers favor an active margin environment (e.g. Rivers and Corrigan, 2000). Moreover, Bédard (2010) recently inferred that a range of parental melts is needed to account for the petrogenesis of the Grenvillian anorbonitites and that at least part of these melts result from extensive high pressure partial melting of arc basaltic sources.

5.3. Relation between the Sveconorwegian metamorphism and the composition of the lower crustal sources

As already mentioned, the mafic facies of the AMC and HBG suites have similar geochemical and isotopic signatures. The differences observed between the two suites with increasing SiO₂ (Figs. 5 and 6), namely higher CaO and Sr as well as lower K₂O and FeO(MgO) in the HBG suite, can be attributed to the subtraction of different cumulates during differentiation (e.g. Wilmart et al., 1989; Vander Auwera et al., 1998; Vander Auwera et al., 2008). However, the AMC suite is anhydrous (orthopyroxene) whereas the HBG suite is hydrous (amphibole and biotite: Bogaerts et al., 2006; Vander Auwera et al., 2008). We also emphasized that although fO₂ probably covers overlapping ranges of values in both suites (FMQ-1 to NNO in AMC and NNO to NNO+1 in HBG, see Section 4.1.3), fO₂ was lower in the HBG suite east of the opx-in isograd. An anhydrous source is necessary leaving a slightly hydrated source (Vander Auwera et al., 2008) for the AMC suite while the opx-in isograd produced an anhydrous source for the AMC suite while the opx-in isograd may not have been originally parallel to the MOHO. This hypothesis is supported by heat flow modeling that shows that modern isotherms are dome-shaped along a section extending from southern Norway to northern Denmark (Balling, 1985). Consequently, we suppose that in the Sveconorwegian lower crust, amphibolite facies conditions prevailed east of the opx-in isograd and granulite facies conditions, west of this isograd.

We suggest that the granulite lower crust west of the opx-in isograd produced an anhydrous source for the AMC suite while leaving a slightly hydrated source (Vander Auwera et al., 2008) for the HBG suite east of the opx-in isograd. An anhydrous source is necessary to produce the AMC suite. Indeed, if the source of the parent magma of the AMC suite contained H₂O, this water would have been concentrated in the melt during dehydration partial melting, thus producing an H₂O-bearing parent magma which is inconsistent with the anhydrous character of the whole AMC suite. The interaction between H₂O and oxygen fugacity is difficult to assess without direct evidence of the metamorphic reactions that took place in the lower
crust. As pointed out by Vander Auwera et al. (2008), Beard and Lofgren (1991), who estimated the oxygen fugacity at NNO+1 and NNO+2 using coexisting magnetite and ilmenite, noted that dehydration melting of amphibolite produced lower fO₂ in their charges than water-saturation melting. Hence, it is possible that more extensive dehydration produced a more reduced lower crustal source for the AMC suite. Granulitization may also be responsible for the lower U, Th and Rb contents of the AMC mafic facies compared to the mafic facies of the HBG suite (TJ primitive jotunite: U=0.2 ppm, Th=0.5 ppm, Rb=18 ppm, Vander Auwera et al. (1998); HBG mafic enclaves: U=0.6–0.5 ppm, Th=1.69–2.9 ppm, Rb=57–45 ppm, Bogaerts et al. (2003a)) (Rudnick et al., 1985).

In summary, we suggest that abundant mafic magmas were emplaced at the base of the crust during a previous event (1.26–1.05 Ga) possibly related to activity along a long-lasting convergent margin. Later, this underplated lower crust was affected by the Sveconorwegian regional metamorphism (1.035–0.97 Ga) with production of a dehydrated reduced lower crust west of the opx-in isograd and a still hydrated more oxidized mafic lower crust east of the opx-in isograd. Shortly after the end of the regional metamorphism, at 0.97 Ga, the post-collisional magmatism was produced by partial melting of these lower crustal sources and yielded the parent magmas of the HBG and AMC suites (Fig. 9).

5.4. Exhumation or unroofing rates of the Sveconorwegian orogeny

Exhumation rates can be estimated in two independent ways, one using the magmatic suites and the other using metamorphic equilibria combined with geochronology. At 1.006 Ga, the metamorphic gneisses near Lyngdal recorded an estimated pressure of 0.6–0.8 GPa (Möller et al., 2002). At 0.95 Ga, the Lyngdal intrusion was emplaced in these gneisses at 0.2–0.4 GPa (Bogaerts et al., 2006). Thus an equivalent of about 0.4 GPa of crust was lost in 56 Ma which yields an estimated exhumation rate of 12 km/56 Ma or 0.21 mm/y. When the uncertainty on the pressure is taken into account, the exhumation rate ranges from 0.10 to 0.32 mm/y.

The pressure conditions of the M1 phase of the Sveconorwegian metamorphism have been constrained at 0.6–0.8 GPa at 1.035 Ga. The time of decompression to 0.56 GPa was further estimated at 0.955 Ga by Tomkins et al. (2005) using zircon grains that co-crystallized with cordierite rims surrounding garnet. Given the pressure range of M1, this gives an exhumation rate of about 0.02 to 0.1 mm/y.

Fig. 9. Conceptual sketch across the Sveconorwegian orogen from the Rogaland AMC suite to the Mandal–Ustaoset line (MUL). C1 and C2 represent the two lithotectonic units recognized in the isotopic composition of the HBG and AMC suites. They are separated by a crustal boundary (Bolle et al., 2010) (see text for explanation). Different symbols are used for anorthositic diapirs (dark gray) and acidic intrusions (crosses) in the AMC suite and for intermediate (dots) and leucogranitic (crosses) magmas in the HBG suite. In this conceptual sketch, partial melting of the lower crust is made possible by underthrusting of lower crustal tongues into the mantle. However, other processes such as foundering of overdense lower crustal sources in the upper mantle are also possible (see text for explanation).
These estimated exhumation rates are low (1 mm/y being considered as rapid) and provided time for the crust to be heated. There is evidence that the Sveconorwegian orogen was exhumed by both erosion and thinning (extension). Foreland basins that could store products of erosion are conspicuously lacking in front of the Sveconorwegian orogen on Fennoscandia (see Bingen et al., 2008). Nevertheless, large and thick sedimentary basins, formed after 1.03 Ga at the northern margin of Baltic and Laurentia — now exposed in the Caledonies of Svalbard, East Greenland, Finnmark, Scotland and Shetland — are interpreted as distal basins collecting sediments sourced in the combined Grenvillian and Sveconorwegian mountain belts (Cawood et al., 2010). Modeling by England and Thompson (1986) showed that crustal thinning of large collision areas may occur by extensional strain as the orogen collapses under its own weight. Extensional reactivation of major shear zones is documented in the Sveconorwegian orogen (Mulch et al., 2005). Also, distribution of titanite–U–Pb and molybdenite–Re–Os ages led Bingen et al. (2006) to suggest that the amphibolite- to granulite-facies domain of the Rogaland Vest Agder could correspond to a gneiss dome (Corti et al., 2003) progressively exhumed during the extension regime prevailing in the post-collisional evolution of the Sveconorwegian orogeny after 0.97 Ga.

5.5. Timing of the Sveconorwegian post-collisional magmatism

The new U–Pb zircon geochronological data acquired on a selection of samples bring additional constraints on the timing of intrusion of the two post-collisional magmatic suites. In the Telemarkia terrane, post-collisional plutons forming the HBG suite range in age between 970 and 932 Ma. The new data corroborate the intrusion and a number of minor occurrences of monzonite (Eia–Rekefjord intrusion, Tellnes dyke). A second minor magmatic pulse at 932–929 Ma, leading to formation of the massif-type anorthosites, satellite leucogneiite plutons (Hidra pluton), the Bjerkreim–Sokndal layered intrusion and a number of minor occurrences of monzonorite (Eia–Rekefjord intrusion, Tellnes dyke). A second minor magmatic pulse at 920–916 Ma corresponds to intrusion of jotunitic magmas and related acidic melts in dykes (Tellnes ilmenite norite, Lomland dyke) and at the roof of the Bjerkreim–Sokndal intrusion resulting in crystallization of part of the mangerite–charnockite sequence of this intrusion. These new geochronological data thus also confirm the composite nature of the Bjerkreim–Sokndal intrusion.

The geochronological data also indicate that emplacement of the HBG suite started before the formation of the AMC suite, lasted about twice as long (38 Ma compared to 17 Ma) as the AMC suite and ended when the main pulse of the AMC suite took place. Also, the HBG suite covers nearly all of southern Norway, a much larger surface than the exposed AMC suite. Although, part of the Rogaland intrusive complex may lie offshore in the Skagerrak Sea under a thick cover of sediments (Olesen et al., 2004). We attribute the earlier formation of the HBG suite to the lower temperature necessary to melt a slightly hydrated source compared to a completely anhydrous source. This difference in melting temperature is probably also responsible for the shorter time span of the AMC suite as the very high temperature required to melt the anhydrous gabbro-noritic source could only be reached during peak conditions.

5.6. Why were massif-type anorthosites produced in the AMC suite and not in the HBG suite?

Given that the mafic facies of both suites have similar compositions, it is puzzling to observe that massif-type anorthosites have been produced only in the AMC suite. Geochemical modeling and experimental data indicate that differentiation from the primitive jotunites, parent magmas of the Rogaland andesine anorthosites, to the evolved jotunites can be accounted for by fractional crystallization with subtraction of a leuconerite cumulate. This early differentiation process is constrained to have occurred in lower crustal magma chambers by the presence of high Al orthopyroxene megacrysts that characterize the massif-type anorthosites. The calculated (Duchesne, 1978) and experimental (Vander Auwera and Longhi, 1994; Vander Auwera et al., 1998) leuconerite cumulate contains a very high proportion of plagioclase (74%) greatly favoring the buoyant segregation of a crystal mush (e.g., Longhi et al., 1993). This high proportion of plagioclase was enhanced by the anhydrous character of the magma that expanded the stability field of plagioclase. Indeed, H2O, when present, depolymerizes the silicate melt and thus lowers the liquidus temperature of silicates. Moreover, the anorthosites were emplaced west of the opx-in isograd in the warmest and most ductile part of the orogen. High temperatures would have facilitated the ascent of the magmatic diapirs through a plastically deforming continental crust.

Using geochemical modeling, Vander Auwera et al. (2008) showed that the monzodioritic liquids of the HBG suite could be produced either by fractional crystallization of a liquid with the composition of an HBG mafic facies or by partial melting of a mafic source. When partial melting was tested, it was supposed that the mafic source had a composition equivalent to that of the mafic facies recognized in the HBG suite. In other words, younger sills emplaced in the lower crust remelt slightly older sills. In the following, the possibility of producing anorthositic diapirs will be examined for both processes. 30% partial melting of a mafic source in the lower crust can generate a monzodioritic liquid and 70% mafic restite. These monzodioritic liquids are probably too evolved (Mg# = 0.29: Bagaei et al., 2003a) to be plausible anorthosite parent magmas. Additionally, mass balance calculations using the least-squares method indicate that differentiation of these monzodioritic liquids to produce granodioritic liquids can be accounted for by subtraction of a bulk cumulate containing a low proportion of plagioclase: 47% or 56% (Bagaei et al., 2003a). In the case of fractional crystallization, it is possible to reach monzodioritic liquids by subtracting a cumulate made of 53% plagioclase from the mafic parent magma. This cumulate composition was obtained from the experimental data of Sisson et al. (2005) acquired on mildly hydrated mafic compositions. A small amount of H2O in the mafic facies of the HBG suite was necessary to reach amphibole saturation in the intermediate monzodioritic composition. This small amount of water probably reduces the stability field of plagioclase and increases that of amphibole, thus producing an early cumulate with a much lower proportion of plagioclase than in the anhydrous mafic facies of the AMC suite. This much lower proportion of plagioclase probably precluded the development of a sufficiently buoyant instability to form magmatic diapirs. Moreover, the HBG suite is located on the low-temperature side (east) of the opx-in isograd. The temperature in the lower crust was thus lower than in the case of the AMC suite, also hindering plastic deformation necessary for diapirc ascent.

5.7. Why are massif-type anorthosites restricted to the Proterozoic?

Using available petrological models on the AMC and HBG Sveconorwegian post-collisional suites, we suggest that the parent magmas of these two suites were produced by partial melting of a source emplaced in the lower crust during a previous mafic magmatic event that has yet to be clearly identified. We can thus address the conditions which, according to this model, were necessary for the development of massif-type anorthosites in the AMC suite:

1. Abundant underplated mafic magmatism;
2. Regional metamorphism reaching granulite facies conditions is a prerequisite as it produces the necessary anhydrous lower crustal source for the AMC suite;
3. Melting of the lower crustal sources: first in the HBG suite (0.97–0.93 Ga) as the melting temperature is lower (hydrous lower crust) and second in the AMC suite (0.93 Ga);

4. The mafic facies so produced are the starting points of the two magmatic suites with production of massif-type anorthosites in the AMC suite.

It has long been recognized that massif-type anorthosites are characteristic of the Proterozoic and geochronological data have shown that they range from 2.12 Ga (Arnanunat, Canada: Hamilton et al., 1998; Ryan et al., 1999) to 0.93 Ga (Rogaland, Norway: Schäfer et al., 1996). The model proposed here may help to understand this observation. The Earth is a cooling body and even if arguments that in the Archean the mantle was not as warm as initially supposed are true (Parman et al., 1997, 2003), estimates still indicate temperatures 100 °C higher than in the Phanerozoic (Grove and Parman, 2004). In the Proterozoic, the Earth’s mantle was thus probably also warmer than in the Phanerozoic and this has already been proposed by several authors as an explanation of the Proterozoic age of the massif-type anorthosites (e.g. Ashwal, 1993; Bédard, 2010). In our model, we consider that very high temperatures are needed to remelt the lower crust. The question remains as to why anorthosites were not formed in the Archean when the mantle was even warmer? It is possible that the answer to this question lies with the first prerequisite mentioned above, the previous underplating of subduction-related mafic magmas. Indeed, this prerequisite implies that subduction was operating similarly as today with production of basalts in the metasomatized mantle wedge or in continental back-arc setting followed by their underplating beneath a thick continental crust. In the Archean, when the mantle was warmer, experimental and geochemical data indicate that the subducted basaltic slab probably melted instead of dehydrated (e.g. Martin, 1986; Rollinson, 2007). Accordingly, felsic magmas (tonalites, granodiorites) were transferred from the subducted slab to the crust impeding the production of abundant underplated basalts. It is also possible that because of secular cooling, during the Archean, the Earth was able to produce large mafic to ultramafic layered intrusions, like the Stillwater complex (2.7 Ga) (many of these mafic plutonic bodies were probably trapped in the lower crust because of their high density) and subsequently in the Proterozoic, less heat was available thus lessening the formation of these ultramafic intrusions, but still enough heat was available to remelt them and produce the parent magmas of the massif type anorthosites by their foundering in the upper mantle (Longhi et al., 1999; Longhi, 2005). The amount of continental crust present at the start of anorthositic magmatism may also have played a role as a thick continental crust is demanded by the pressure of crystallization of the high-Al orthopyroxene megacrysts (1.1–1.3 GPa). Bédard (2010) also suggested that the pre-Proterozoic crust was not strong enough to be tectonically thickened. As summarized by Rollinson (2007), several lines of evidence suggest indeed that before 2 Ga the volume of continental crust was relatively small. The mantle evolution curve of Nd versus time (Nagler and Kramers, 1998) started to increase from about +1 at the end of the Archean. This increase can be linked to the extraction of the continental crust supporting the inference that the amount of continental crust was limited before the Late Archean. Also, the beginning of the secular variation of the mantle U/Pb at about 2 Ga has been explained by the built-up of a significant volume of continental crust (Elliott et al., 1999). Finally, several isotopic systems suggest that after 3 Ga the nature of mantle processes probably changed (Rollinson, 2007). Consequently, the onset of massif-type anorthosites magmatism may indicate when plate tectonics began to operate in a way similar to today.

6. Conclusions

New and published U–Pb zircon geochronological data bracket the emplacement of the HBG suite between 970 and 932 Ma and confirm a short lived intrusion of the AMC suite, with a major pulse at 933–929 Ma and a minor pulse at 920–916 Ma.

Published Sr–Nd–Pb isotopic data on the Feda, HBG and AMC suites as well as new data on three mafic facies of the Feda orogenic suite indicate the involvement of three end-members in these magmatic suites: the parental mafic facies (primary component) and two different crustal contaminant suites, the C2 crustal contaminant involved in the HBG (Andersen et al., 2001) and Feda suites is characterized by low Rb/Sr, U/Pb ratios and Sm/Nd, and was probably a granulitic crust depleted in U and Rb. The C1 crustal contaminant involved in the AMC suite and already recognized by Bolle et al. (2003a) is characterized by higher Rb/Sr, U/Pb and Sm/Nd ratios. It is proposed that these two crustal contaminants correspond to two different lithotectonic units possibly separated by a recently recognized shear zone located just East of the AMC suite (Bolle et al., 2010).

Given that the primary component is the same in the HBG and AMC suites, we suggest that the parent magmas of both suites were produced by partial melting of lower crustal sources formed at the base of the crust during a previous mafic magmatic event. Possible candidates for this latter are the Valldal and Gjuve–Morgedal metasbasalts (1.26 and 1.16 Ga), interpreted as related to a long lived convergent margin and the mafic facies of the Feda orogenic suite.

Prior to partial melting, the granulite facies Sveconorwegian regional metamorphism played a key role in modifying the composition of the lower crustal sources west of the opx-in isograd where the AMC suite was emplaced. Specifically, the granulite facies conditions produced the appropriate anhydrous source for the parent magmas of the AMC suite. In turn, the anhydrous character of these magmas expanded the stability field of plagioclase enabling the early crystallization of a high proportion of this phase and formation of gravitationally unstable anorthositic diapirs.

According to this model, the anorthosites are formed during the post-collisional evolution of the orogen by partial melting of the continental arc root. This process was made possible in the Proterozoic because the temperature was sufficiently high to promote partial melting of an anhydrous mafic lower crust. Such a process did not occur in the Archean because the main mass transfer to the crust was then felsic (tonalites, granodiorites — melting of the subducted slab) and not basaltic (dehydration of the subducted slab), thus precluding the formation of the prerequisite lower crustal sources in the continental arc root. Therefore onset of massif-type anorthosites magmatism may indicate a plate tectonic regime similar as today.

Acknowledgments

The NORDSIM facility in Stockholm is operated under an agreement between the research funding agencies of Denmark, Norway, Sweden and Finland, the Geological Survey and the Swedish Museum of Natural History. Data were collected at NORDSIM under the supervision of L. Ilyinsky, K. Lindén, and M.J. Whitehouse. This is NORDSIM publication #265. The SHRIMP II facilities at Curtin University of Technology in Perth, Australia, are operated under the Perth Consortium, comprising Curtin University of Technology, the University of Western Australia and the Geological Survey of Western Australia. The facility was funded by the Australian Research Council. N. Mattielli and J. de Jong are thanked for the Pb isotope measurements on the Nu Plasma MC-ICPMS at ULB (Brussels). This is Lamont-Doherty Earth Observatory Contribution No 7470. Jean Bédard and Fernando Corfu are greatly thanked for their constructive reviews of the manuscript.

References

